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Abstract
This report summarizes the geometric-optics description of the interaction of electromagnetic
waves with metals. The components of this description are a complex index of refraction that
depends on frequency and conductivity, and the Fresnel equations describing the reflection and
transmission of a monochromatic wave incident on a planar surface. From this follows a char-
acterization of the heating of metals at frequencies below the visible, and therefore also of their
emissivity over this same frequency range. These results are used to determine heating and equi-

librium of a metal surface exposed to earth and sun blackbody radiation fields.
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QUALITATIVE SUMMARY

For sufficiently low radiation frequencies, the optical properties of metals are determined
by their conduction electrons. These electrons occupy quantum states that are not bound to
any particular atom; rather, the move freely through the ion lattice, carrying thermal energy
and electric current. The conduction electrons may be treated mathematically as a gas, more
specifically a plasma, contained within the ion lattice. And like a plasma, the ionosphere for
example, they respond freely to and reflect radiation of frequencies below the plasma frequency,
which for a metal depends only on the number density of conduction electrons. Above the plasma
frequency, the metal becomes transparent. For typical metals this occurs in the UV part of the
spectrum. Unlike a true plasma, however, the atomic structure of the lattice ions also play a role
in the metal optical properties. This behavior, too, manifests at UV frequencies and above. So
for frequencies at visible and below, the optical properties of metals can be understood in terms
of the conduction electrons.

It is no surprise that metals are reflective in the visible; they are also strongly reflective at
lower frequencies as well, through IR and below (assuming the radiation wavelength is still smaller
than the physical size of the metal object in question). Although small, absorption does occur at
these low frequencies, and is proportional to the square root of the incident frequency.

Now, according to the principle of detailed balance, the emission strength of a metal must
equal its absorption strength, as a function of frequency and emission/incidence angle. Therefore,
because metals are poor absorbers of radiation, they are also poor emitters. So for two emitting
surfaces at the same temperature, a metal will emit less than a blackbody. Thus metals will
look bright in reflection, cool in emission, compared to blackbodies at the same temperature.
And because they are emitting poorly, what radiation they do absorb they hang onto more than

a blackbody. They therefore will reach a higher equilibrium temperature in the solar radiation



field than a blackbody. In fact, a metal surface in equilibrium with the solar radiation field will
acquire a temperature of around 500 K, quite a bit hotter than a blackbody would acquire in the
same radiation field. But metals also have relatively large heat capacities, so it takes them some
time to actually reach these temperatures. For example, it takes about an hour to heat a metal
slab of thickness 1mm by 100 K in the solar radiation field. The following sections supply the

mathematical development that underlies this qualitative description.



INDEX of REFRACTION of METALS

Contribution of Conduction Electrons

Because the index of refraction will form the basis for our considerations of the optical
behavior of metals, it is worthwhile summarizing its derivation from scratch. This summary
follows Feynman, v1, ch. 32.

As mentioned in the summary, metals are characterized by ‘free’ electrons, which move
throughout the lattice of ions comprising the bulk. To a first approximation, these electrons
may be treated as a gas, in that they don’t have any bound quantum-mechanical states (the
conduction electrons actually move in a band of states in energy space that is so fine-grained it
can be viewed as a continuum). When an electromagnetic wave impacts a metal surface, its electric
field will shake these conduction electrons, thereby causing them to radiate. The entire process
can be decomposed into reflected and transmitted waves which characterize the propagation of
electromagnetic energy in both materials. If we can come up with an index of refraction for the
metal, we can describe this complex process in relatively simple terms. The electromagnetic wave
will also interact with the bound electrons, which would require a quantum-mechanical description.
Bound states have characteristic energies of an eV, which corresponds to the visible/UV portion of
the spectrum. We confine ourselves to the relatively-simple behavior of the conduction electrons.
Our description of their behavior will be valid at all frequencies, but the bound electrons will
significantly influence the optical properties of metals above visible frequencies.

A conveniently simple and quantum-mechanically correct way of looking at the motion of
electrons is to treat them as harmonic oscillators. But since the conduction electrons are free, there
is no restoring force. There is, however, dissipation, due to electron collisions with other electrons
or with ions. We don’t really know the nature of this dissipation, but let’s say it’s proportional

to electron velocity, and introduce a dissipation constant y. For 1l-dimensional motion, with



coordinate x, under the influence of a harmonic electric field F with angular frequency w, the

equation of motion for an electron of mass m and charge q is:
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This motion induces an instantaneous dipole moment p = gx for each conduction electron relative
to its immediate partner ion. Since the atomic polarizability « is defined such that p = aepE (e

is the permittivity of free space, and implies mks units),
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The volume polarization P = pIN = g NaE, where N is the number density of these conduction-
electron atoms. This last expression is properly written as a vector, in terms of a polarization
matrix which represents non-isotropic electromagnetic response of the material. For the conduc-
tion electrons, isotropic polarization is a valid approximation.

Since electromagnetic waves are transverse, consider now an electromagnetic wave propagat-
ing through our material in the Z direction, with its electric vector polarized in the Z direction. The
Z component of the vector wave equation for the electric field (implied by Maxwell’s equations)

is:
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The last term is zero, since P follows the spatial variation of £. Our monochromatic electric wave

varies as:

E = Eoei(wt—kz) — Eoeiw(t—nz/c)
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where we have introduced a dielectric constant n such that the wave phase velocity w/k = ¢/n;
c is the speed of light in vacuum, and k is the magnitude of the wave number.

Substituting these expressions into the wave equation, one finds:
Ng?/meg

n?=1+Na=1+ 5
YW — w
What is the meaning of a complex index of refraction? The real part np describes the slowing-
down of the wave from c to c/ ngr. The imaginary part nny describes damping of the wave with
characteristic length ¢/wny, and will describe energy absorption and therefore electromagnetic
heating of the metal, the ultimate goal of these considerations.

The dissipation constant -y can be related to conductivity. But first note that 7y is just the
inverse of the mean collision time 7 for the conduction electrons: Since the collision frequency
may be larger or smaller than the wave frequency, a drift velocity v may be defined as simply the
product of the instantaneous acceleration ¢FE/m and 7. If we assume that there is no average
acceleration, that the drift velocity is constant, then we have force balance between drag and the
electric force: ymv = yqET = qE. Thus v = 1/7.

For our isotropic metal, a current J will be induced proportional to our electric field, J = ¢ F,

with o the conductivity of the metal. But the the average current J = Nqv, and therefore the

conductivity is related to the collision time/dissipation constant:

This allows us to write the index of refraction:
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Typical Material Parameters

To examine the significance of this expression for 12

, we must assign some values to the
parameters for metals of interest. The table below provides numerical values for the characteristic

frequencies of n2, based on quantities tabulated in the CRC Handbook of Chemistry and Physics.

1/o o/e€o 1/ Wp

(€2 - cm) (Hz) (Hz) (Hz)
carbon steel 18 6.3 x 1017 4.3 x 10 1.6 x 1016
stainless steel 72 1.6 x 107 1.7 x 10%° 1.6 x 1016
aluminum 3.5 3.2 x 1018 6.2 x 1013 1.4 x 1016
aluminum alloy 7.5 1.5 x 1018 1.3 x 10 1.4 x 106
titanium 43 2.6 x 107 1.3 x 1015 1.9 x 1016
magnesium alloy 9 1.2 x 10'8 2.2 x 10* 1.6 x 106

Calculation of the characteristic frequencies also required mass density, atomic weight, and number
of conduction electrons per atom. This latter quantity is in effect a tunable parameter in the
expressions, because it follows only from quantum-mechanical considerations of the metal. It was
taken to be 2 for titanium and magnesium alloy, 1 for the others. It will generally fall in the range
of 1-2.

In the accompanying figures, the index of refraction for a metal is plotted, using representative
values of 1/7 = 3 x 10 Hz, and 0'/€y = 5x 1017 Hz. ‘Omega’ on the x-axis refers to the angular
frequency of the radiation, which is the product of the frequency in cycles per second and 2.
The imaginary part of n is negative, in keeping with its dissipative character; its absolute value is
shown in the plots. The characteristic damping length related to m7, known as the skin depth, is

also shown. In the transition from low to high frequency the imaginary part of 7 is relatively larger



than the real part, indicating strong absorption at these frequencies. The low- and high-frequency

limits of nn are considered analytically below.

Low Frequency Limit
It is instructive to examine the low frequency limit of our expression for n2. This will be the
frequency range where metal optical properties are dominated by the conduction electrons, and
will also be of interest for heating in sun and earth blackbody radiation fields. The meaning of
‘low’ is with respect to the 2 characteristic frequencies: w < 0/€p and w < 1/7. This implies

frequencies infra-red and below. In this case, n? ~ —io [€ow = n% - Taking the square root:

g

1—i
260(4) ( Z)

nNpr =

Here, the index of refraction is equal parts real and imaginary. The sign on the square root is
chosen such that the sign on the imaginary part implies dissipation. Otherwise, we would have
the unphysical situation of the metal feeding the wave amplitudes (which can occur, e.g., in lasing

media). We can also easily calculate the low-frequency skin depth 6 p:
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This value is the exponential damping length of low frequency waves in the metal. It is typically
very small. For a nominal value of o /ey = 108 Hz at a UHF frequency of 2.7 X 10° Hz, the
skin depth is 8 pm. Low frequency waves do not penetrate deeply into metals. Their energy

dissipation is largely at the surface.

High Frequency Limit
Now consider the opposite limit of radiation frequencies much larger than the characteristic

frequencies. Then:



o= 1- ()
2

g

32

2

P 0T mey

The characteristic frequency wy, is none other than the plasma frequency that characterizes oscilla-
tory motion of plasmas, and is the frequency at which they become transparent. This transparency
sets in when the inertia of the ions is too great to allow them to respond to the radiation. For
metals, this frequency is seen to depend only on the number density of the electrons and their
mass, not the conductivity. At sufficiently high frequencies, the conduction electrons are effec-
tively a plasma to the radiation, and the metal therefore becomes transparent above its plasma
frequency (bound states notwithstanding). Values of w, are also tabulated above, and all the
metals are seen to have quite similar values. This is because all metals have similar conduction
electron densities.

At these frequencies, the dielectric constant is real and the conduction electrons are trans-
parent. This occurs at ultraviolet energies and above. However, we then have to worry about
bound electrons at these frequencies leading to absorption bands. By and large, however, metals
are transparent in the UV and above. Note that the plots of skin depth show that it can, however,

stay below 1mm well into the ultraviolet. A practical definition of transparency, then, is that the

thickness of the medium is less than the skin depth.



FRESNEL EQUATIONS

The Fresnel equations relate the amplitudes of reflected and transmitted electromagnetic
waves to the amplitudes of the incident waves, when a wave impinges on a planar surface sepa-
rating two dielectric media. The derivation is algebraically cumbersome, but straightforward. It
decomposes the problem into 3 waves: incident, reflected, and transmitted. All are assumed har-
monic and monochromatic. Maxwell’s equations are used to obtain relations between the electric
and magnetic fields on either side of the boundary. It turns out that there are two fundamental
types of behavior, depending on whether the incident electric vector is polarized parallel or per-
pendicular to the plane defined by the incident and reflected wave vectors. The transmitted wave
vector is also in this plane.

These equations presume a discontinuous change in dielectric constant, discontinuous mean-
ing the change occurs over a distance much less than the radiation wavelength. Reflection is
largely a function of a discontinuous jump in dielectric constant; if the dielectric constant changes
sufficiently slowly in space, reflection does not occur. Also, surface irregularities on the scale of
a wavelength, or thin layers, can alter the reflection and transmission properties. Although these
results assume idealized smooth surfaces and discontinuous boundaries, they provide a good un-
derpinning for understanding how radiation interacts with metals. Because we assume an infinite
planar boundary, we effectively assume the physical size of the metal is much larger than a wave-
length. This is the regime of geometric optics. When the metal is small relative to the radiation
wavelength, or of a similar size, then standing waves can be set up on the target which produce
radiation fields not simply describable in terms of simple reflection. In the limit of surfaces small
relative to wavelength, a simple description again ensues: scattering cross-section goes as A™%, a

regime known as Rayleigh scattering.



Irrespective of the incident polarization, continuity of the fields at the boundary demands
that the reflected and transitted waves share the frequency of the incident wave: reflection doesn’t
change frequency. And because w?/k? = ¢ /n?, k?/n? is a constant among the 3 waves.

The component of the wavevector parallel to the boundary is also a constant among the 3
waves. Measuring the incident angle ; with respect to the surface normal, then this component

is ksin 0; = (wn/c)sinf;. This leads then to Snell’s law:

. ny .
sin @y = — sin 0;
12

where n; 5 are the indices of refraction for the (incident,transmitted) waves, and 6, is the trans-
mission angle. For complex 713, this equation implies complex 8¢, and so the transmission angle
does not have a simple physical interpretation. The above equation must be considered merely

the definition of the quantity #;. We now summarize the amplitudes for the two polarizations.

Perpendicular Polarization
In this case, the electric field is perpendicular to the plane of incidence, and is parallel to the

boundary surface and unidirectional for all 3 waves.

E,. njicosf; —nycosl, E; 2n4 cos b;
E; nicosf; + nycosb, ’ E; njicosf; +ngcosb;

where FE;, E,, E, are the amplitudes of the incident, reflected, and transmitted electric fields,
respectively. The complex transmission angle 0; is as defined above. That expression may be used

to eliminate nj 2:

E.  sin(6; — 6,)

. 28in 6, cosf;
E; sin(ﬁi + Ht) '

B _
E; o sin(Gi + Ht)
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Parallel Polarization
In this case, the electric field vector is parallel to the incidence plane for all 3 waves. This will
be a bit more complicated than the previous case because the incident electric vector now has two
components: parallel and normal to the surface. Let us adopt the subscript x for the component
normal to the surface, and y for the component parallel to the surface. Then the reflection and

transmission coefficients for each of these components are:

E,.; nscosf; —nycosb; E.y 19 By 211 cos 0; Eyy

Ei ng cos 8; + ny cos 0, o E.,;y ’ n1 Fiy o ng cos 6; + ny cos b E;

In terms of the magnitude of the 3 waves, E2 = E2 + EZ, these expressions add up to:

E,. - npcosf; —njcosb, E; 2nq cos 6;

E;  njcosf; + nycosb; ’ E; njicosf;+ nsgcosb;

Snell’s law can be used to eliminate 7; o from these equations:

E. tan(6; — 0;) _ E, 2sin 6, cos b;

E;  tan(; + 6) ' E; - sin(8; + 6;) cos(6; — ;)

Normal Incidence
For the special case of radiation incident normal to the surface, the distinction between

perpendicular and parallel polarizations vanish.

E, _np—ng B, 211

E;  ny+mng ’ E; ni+ng
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ENERGY ABSORPTION

Reflected Energy
It is a standard result of electrodynamics that the phase velocity of a wave propagating in
a material of permittivity € and permeability y is given by v = ¢/ V€. Restricting ourselves
to non-ferromagnetic materials, for which p ~ pg, the permeability of free space, then matching

this result to our definition of dielectric constant implies n?

x €. Now, the energy density of the
electromagnetic field is o< €E?, and its flux density in the medium is o (¢/n)eE? x nE2. For
a given energy flux density, the quantity entering or leaving a surface is o< cos @, where 0 is the
angle of the wave vector measured from the surface normal.

Denoting by A, R, T the incident, reflected and transmitted field amplitudes, respectively,

then conservation of energy at the surface implies:

11 cos 0; A% = ny cos 6, R? + ngy cos 0, T2

or:

l_R_2+n2c039t ZE
A% ' njcosf; A?

where we have used that the angles of incidence and reflection are equal. As long as the skin
depth is smaller than the thickness of the metal, requiring only thicknesses greater than 1 mm for
radar through visible frequencies, the energy transmitted can be identified as the energy absorbed.

Thus the Fresnel reflection coefficients can be used to determine energy absorption:

energy absorbed =1 — —

The intensity of reflected radiation, and its transmitted complement, is shown in subsequent

plots as a function of frequency and aspect angle. These plots are obtained by squaring the Fresnel

12



field amplitude reflection coefficients obtained previously. The incident material was chosen to
have n; = 1, corresponding to vacuum, and 7, is our canonical metal, plotted in previous figures.
Note that fraction of reflected energy goes to 1 as the incidence angle goes to 90°. It is seen that
between 10'® and 107 Hz, for the choice of parameters, the metal abruptly becomes virtually
transparent for all except grazing incidence angles. This is the transition at the plasma frequency.
The accompanying color plots show the transmissivity as a function of both incidence angle and
frequency.

We also see that a minimum in the parallel energy reflection, and a corresponding maximum in
the parallel energy transmission, occurs for grazing incidence angles and frequencies below wy. The
maximum is more pronounced for frequencies near the characteristic dissipation frequency, 1/7.
The same phenomenon occurs for materials with real indices of refraction, and the critical angle
is known as the Brewster angle. For real dielectrics, the parallel reflection drops to zero at this
angle. The Fresnel equation for parallel waves shows the reflection coefficient oc 1/ tan(; + 6).
For real transmission angles, this term vanishes as 6; + 6; — 90°, when the transmitted and
reflected waves propagate at right angles to each other. To understand the Brewster phenomenon
in real dielectrics, consider that both the reflected and transmitted waves can be viewed as arising
from the same vibrations of surface electrons. Since electromagnetic waves are transverse, and
are not radiated along the direction of electron acceleration, the electrons cannot produce two
orthogonal waves in the incidence plane, and the parallel reflected wave therefore must drop to
zero. For metals, on the other hand, #; acquires an imaginary component, and the reflected
parallel amplitude therefore remains finite.

Aside from this behavior of the parallel wave, we see from the plots that our canonical metal
is greater than 90% reflective over the range of frequencies for incidence angles less than 60 or 70

degrees.
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Perfect Absorber
Consider the limit of np = —iny, purely imaginary. Then no propagating transmitted wave
exists; the transmitted energy is merely attenuated. Let’s further consider the case of normal
incidence. Then

E,

E;

*_ (-in)(+in) _1+n3 _

_ ) 1
(1—s4n)(1+in;) 1+ n?

2_ 1—1’L2
1+ ns

For the ideal case of a perfectly absorbing material, all the energy is reflected. A general
rule is that if any material gets to be a very good absorber, the waves are strongly reflected at
the surface and very little gets inside to be absorbed! We have seen in our plots of the index
of refraction for our canonical metal that the imaginary part of the index increases toward lower
frequencies. Reflection coefficients get correspondingly large toward these frequencies, with 99%
reflection below 10'* Hz. Thus, metals are almost perfect absorbers of radiation at infra-red
frequencies and below, and are therefore also highly reflective at these frequencies. Although
metals are IR reflective, we will see below that because metals are also poor IR emitters, they

hold what radiation they do absorb and can be substantially heated in the solar radiation field.

Low Frequency Limit: Absorption and Emission
Although very little low-frequency energy traverses the interface, we can use previous results
to quantify what little heating there is in this regime, and thereby thermal emission also. Now
consider energy absorption for the low-frequency limit discussed previously, n ~ npp. Here,

ng = ny > 1. For a metal-vacuum interface at normal incidence:

E, 2 1—mn, 2 €ow
—| = ~1—=24/—
E; 14 ny ez
and thus:
fractional energy absorbed = 2 Al
o
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where we assumed the energy transmitted is absorbed. Thus energy deposition at normal incidence
scales as \/m for infrared through radar frequencies. As we saw previously, the fractional energy
absorbed is typically less than 1%.

Knowing the absorption of a metal, we can calculate its emission based on standard arguments
from thermodynamics. The principle of detailed balance states that energy absorbed at a specific
frequency and a specific incidence angle equals the energy emitted at that frequency and angle, for
a body in thermal equilibrium at some temperature T'. This implies that the ratio of emission to
absorption at thermal equilibrium is the same function of frequency and temperature, regardless
of material properties. This function is, of course, the Planck blackbody function. Therefore the
low-frequency thermal emissivity F,, of the metal, over a range of frequencies of width dw, is

equal to the product of the Planck function B(w,T') and its low-frequency absorptivity:

Eudw =2, /%B(w,fp)dw

o1 w3

Bw.T) = 5 g gt =1

Thus, the low-frequency emissivity of a metal at temperature T is proportional to the Planck
spectrum convolved with \/m.

An immediate result of the identification of emission and absorption properties is that metals
will appear cooler in emission than a less-reflective body at the same temperature. This can be
demonstrated in the lab with a tank of water at some temperature. Silver one end of the tank,
and blacken the opposite end. Situate thermometers at both ends of the tank. The rﬁirrored
end will register a cooler temperature than the blackened end, due to the correspondingly poorer
emissivity of the mirror. Thus a metal container of some material at some temperature will emit

less radiation than if the container could be treated as a blackbody. When viewed in the infrared,



metal objects will appear cooler, in terms of their emission, than less-reflective bodies at the same
temperature. Seen in reflection, metal objects will be infra-red brighter than true blackbodies.
The preceding arguments illustrate the thermal behavior of metals, but the emission formula
is not quite right. We actually used the absorptivity for normal incidence. With the exception
of the Brewster effect for parallel waves, the reflection is a rather flat function of incidence angle.
But as the plots show, there is an incidence-angle dependence which has not been accounted for
in the above expressions. Specifically, B(w,T) above was obtained by assuming the absorption

was not a function of incidence angle. A more-accurate expression for the thermal emission is:

Ro1 w3

Ewdw dQ da = a,(UJ, 0); (271,)3 ehw/kT _

7 cos Odw df2 do

This expression gives the power emitted per unit area into a band of frequencies of width dw,
into a unit of solid angle of size d2, and of polarization c (there are just 2 polarizations). The
angle-dependent absorptivity is a(w,#). The cosine factor is geometrical, arising from the fact
that photon intensity striking or leaving a surface goes as the cosine of the angle measured with
respect to the surface normal. The expression for B(w,T) was obtained by integrating over
2, assuming absorption was not a function of angle, and multiplying by 2 to sum over both
polarizations. (Note this polarization is different than the polarization of the incident radiation
relevant to the Fresnel equations. Photons, being massless particles, have just two polarization
states, corresponding to spins parallel or anti-parallel to the direction of propagation.)

Realizing now that there will be a directional dependence to the thermal emissivity of a
metal, the previous results using the low-frequency transmission at normal incidence are a suitable
representation of the frequency-dependent emissivity for all but oblique angles. The same normal-
incidence reflection formulae can also be used with the full expression for the metal index of

refraction to obtain a suitable approximation to the metal emissivity valid into the visible.
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Heating in Sun and Earth Radiation Fields

The approximation of normal incidence and angle-independent absorption can be used to
determine the energy absorption, and therefore the heating, of a metal exposed to the solar or
earth blackbody radiation fields.

Let’s examine the case of energy absorption by a metal of blackbody radiation at normal
incidence, taking specifically the earth blackbody spectrum at 300 K, and the solar spectrum
at 5900 K. In the accompanying figure these normalized spectra are superposed on a plot of the
normal-incidence transmission factor for our typical metal. Recall that the jump in transmissivity,
which we can equate to absorptivity if the skin depth is sufficiently small, occurs at the plasma
frequency, which we have seen is relatively insensitive to metal parameters. The ‘knee’ in the
absorptivity at the dissipation frequency is a stronger function of metal properties, and can vary
among metals by a factor of 10. Apparently, the UV part of the solar spectrum is falling expo-
nentially right in the frequency range where the metal begins to transmit energy; the earthshine
spectrum is negligible in this frequency regime. Although UV can cause appreciable heating in
metals while the skin depth remains small, metallic heating in earth and sun radiation fields must
be due largely to absorption of a few percent of the incident energy in the peak of its spectrum.

Numerically, the amount of enery absorbed per unit area per unit time will be the integral
of the product of the incident spectrum and the frequency-dependent absorption. For normal

incidence:

1—71,2 2
14 ny

energy absorbed = / (1 — } ) B(w,T)dw

The solar blackbody spectrum at 5900 K contains about 7 x 107 W/m?. But this is attentuated
by the square of the ratio of the sun’s radius, 7 X 108 m, to the earth’s distance from the sun,
1.5 x 108 km. The ‘solar constant’ at earth is thus about 1500 W/m?. The earth blackbody

spectrum at 300 K contains about 460 W/m?, roughly a third of the solar constant. But since the
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earth is much closer to objects of interest than is the sun, there is relatively little 1/ 2 attenuation.
For heights h above the earth of radius Rg, where h < Rg, the distance attenuation factor is
about 1 — 2h/Rg. Heights of 300 km are required to gain a distance attenuation of 10%.
Because of the complexity of the absorptivity dependence on frequency, the above integral
must be evaluated numerically. For our metal parameters it is found that roughly 5% of the
normally-incident solar energy is absorbed, and roughly 3% of the earth energy. Some insight into
the dependence of these factors on material parameters can be gained by considering again the

low-frequency limit. Then the above integral simplifies to:

[ 2+/eow/oB(w, T)dw
[ B(w, T)dw
kT/h

o/eo

fraction energy absorbed =

=3.8

Because the earth blackbody spectrum dies exponentially above the assumed dissipation frequency
of 1 / T, our approximation for the low-frequency absorption is valid for earthshine. Putting
T = 300 in the above expression yields an absorption of about 3%, consistent with the numerical
integral. At low frequencies, the fractional absorbed blackbody energy is proportional to the
square root of the ratio of the characteristic thermal frequency to o/€p. Since there can be
a factor 10 variation in o /€y among metals, we can expect a factor 3 variation in earthshine
absorptivity. Because the magnitude of the index of refraction does not vary much in magnitude
between 1/7 and Wy, the low frequency absorption factor above is approximately correct for solar
absorption, even though sunshine peaks in a frequency regime where the metal index of refraction
does not have the low-frequency functional form.

So a metallic surface absorbs a few percent of the incident sunshine and earthshine. Is this
enough to significantly heat the metal? For a flat metal object of thickness d, density p, and

specific heat capacity cp, to raise the temperature by an amount AT with a normally-incident
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energy flux F' requires an amount of time ¢t = dpc, AT /F. Some representative metal parameters

are tabulated below:

p cp
(9/em®)  (J/g-K)

Al 27 0.9

Cr 7.0 0.45

Co 89 0.42

Ag 105 0.24

For these values, the time required to raise the temperature of a slab of thickness 1mm by 100 K in
the solar radiation field is about 1 hour. For lcm thickness, 10-15 hours would be required to attain
the same temperature increase. Although the earthshine flux is a similar order of magnitude to
the solar constant, the earthshine cannot heat the metal beyond the earth blackbody temperature
if the metal is in thermal equilibrium with the earthshine environment. For this to occur would
violate the 2nd law of thermodynamics. But for a metal object in orbit, or a lower-temperature
regime, earthshine heating will proceed as for the solar heating considered above.

Of course, while the metal is absorbing radiation, it is also emitting at a rate governed by
its own temperature and emissivity. We have seen that the low absorptivity of metals implies low
emissivity, and so a metal object will tend to hold its heat compared to a perfect blackbody at the
same temperature. This explains why a coin, key, or other metal object left in the sun can become
too hot to touch after a time. How hot could a coin left in the sunshine become? Recall that the
integrated energy emitted by a blackbody at temperature T is given by T4, where osp is the
Stefan-Boltzmann constant (not to be confused with the conductivity o). We have also seen that
the emissivity is equal to the absorptivity. Finally, we have already performed the integral of the
Planck spectrum weighted by the low-frequency absorptivity of a metal. Using this low-frequency
expression for absorption, and equating the energy received by a metal object to that which it

radiates:
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R 4/9
= T, =T, (—G) ~ 540 K
Ag

In the above, the sun temperature is Ty = 5900 K, sun radius is R, earth heliocentric distance
is Ag, and metal equilibrium temperature is T,. This expression is strictly valid only for radiation
normally-incident on flat plates, and assumes the emitting and absorbing areas are equal. If only
one side of the plate was absorbing while both sides were emitting, the equilibrium temperature
above would be reduced by a factor (1/2)2/9 ~ 0.86. It is interesting that the conductivity cancels
out of the expression, implying this equilibrium temperature holds for any metal that obeys an
absorptivity proportional to \/u_) That is, the functional dependence of the absorptivity, not its
magnitude, determines the equilibrium temperature. This is consistent with the idea that thermal
equilibrium is independent of material composition. Of course, the amount of time it takes to
reach equilibrium is a function of material properties, as considered above. A temperature of 500
K is certainly hot enough to burn organic matter, but is well below the typical melting point of
metals, which is about 1000 K.

For a perfect absorber, or a body characterized by an absorptivity independent of frequency,
the equilibrium temperature scales like T (R /A@)l/ % ~ 400 K. This is the sort of scaling that
determines to first order the ‘equilibrium’ temperatures of the planets in our solar system. That
the earth (and the moon) is closer to 300 K than 400 K can be understood in terms of a roughly
constant albedo controlling absorption, and perfect blackbody emission (on earth, the clouds,
land, and sea play differing roles in emission and absorption, so detailed balance is not violated).
In terms of a constant albedo a, this 400 K equilibrium temperature at earth would be reduced

by a factor (1 — a)*/4; an albedo of 0.7 would bring 400 K down to 300 K.
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These same arguments can be used to determine the equilibrium temperature of a metallic
plate in orbit, as determined by earthshine. For altitudes of several hundred kilometers, the

earthshine equilibrium temperature is:

At 200 km, the earthshine equilibrium temperature is 295 K, indistinguishable from the equilib-
rium temperature of the earth itself. Again, the above expression assumes equal emitting and
absorbing areas, normal incidence, and low frequencies.

For high altitudes, the scaling is the same as for the solar case. In terms of the geocentric

distance of the metal object, R, its equilibrium temperature is given by:

4/9
r.-7 ()

At 5 earth radii, T, ~ 150 K.
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CONCLUSIONS

Sunshine plays a significant role in the heating of metals, as well as their reflected IR signa-
tures.

Earthshine does not significantly heat metals, but it will be significant in the reflected IR
signature.

Fraction of IR energy absorbed by a metal ~ y/w/(c/€g).

Fraction of blackbody energy of temperature T’ absorbed by a metal ~ \/(kT/h)/(c /o)

Metal equilibrium temperatures in the solar radiation field at 1 AU ~ 500 K.
A region of ‘anomalous’ absorption, and therefore emission, exists for metals at grazing
incidence/emission angles or frequencies near the conduction electron dissipation frequency,

for radiation with a parallel component of polarization.
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