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Abstract

This article establishes the formalism to describe the modulation of the microwave signal from the

finite emissivity of the rotating reflector onboard the Advanced Technology Microwave Sounder.

The standard, polarization-dependent Fresnel equations are used to calculate the polarization-

dependent reflectivities from a metal surface for a complex index of refraction characteristic of

metals at microwave frequencies. The principle of detailed balance allows us to equate one minus the

reflectivity to the emissivity. We depart from standard formulae given in Born & Wolf, Principles

of Optics, 7th edition, Cambridge University Press, 1999.

This initial draft considers only the reflectivities. The effects of finite reflector emissivity and

the temperature of the reflector will be added in an update.
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FRESNEL EQUATIONS

The Fresnel equations describe the behavior of radiation, transmitted and reflected, in-

cident on a boundary at which the index of refraction changes. The Fresnel equations

distinguish electric field polarization parallel, and perpendicular, to the plane of incidence.

At normal incidence, these directions are degenerate. The components of the transmitted

electric vector are written T‖ and T⊥, and those of the reflected electric vector are written

R‖ and R⊥. The incident components of the electric vector are written A‖ and A⊥. The

angle of incidence with respect to the boundary normal is θi, and the parameter θt describes

the transmitted radiation. The incident index of refraction is n1, and the index changes

discontinuously to n2 across the boundary. The indices of refraction and θt are complex

numbers.

T‖

A‖

=
2n1 cos θi

n2 cos θi + n1 cos θt
(1)

T⊥

A⊥

=
2n1 cos θi

n1 cos θi + n2 cos θt
(2)

R‖

A‖

=
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

(3)

R⊥

A⊥

=
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

(4)

These are equations (20) and (21) of Born & Wolf (B&W) Section 1.5. There is an

alternative form of the equations (B&W 20a and 21a) that eliminates n1 and n2 in terms of

θt, but the form above is more useful for our purposes.

The angle of reflection will always equal the angle of incidence. The relation between angle

of incidence and θt is given by Snell’s Law, equation (8) in the section of B&W referenced

above.

n1 sin θi = n2 sin θt (5)

This equation gives complex θt in terms of complex n1 and n2.
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INDEX OF REFRACTION OF METALS AT MICROWAVE FREQUENCIES

A separate report at http://konfluence.org/OM1.pdf provides a derivation for the index

of refraction of metals across a wide frequency regime:

n2 = 1− iσ/ωε0
1 + iωτ

(6)

σ is the conductivity of the material, ε0 is the permittivity of free space, ω is the angular

frequency of the radiation, and τ is a dissipation parameter that scales with the mean

collision time. Born & Wolf provide a derivation of the complex index of refraction from the

Maxwell equations equivalent to (6) when τ = 0.

The formula (6) requires consideration of the equations of motion of the material. The

complex index of refraction has three characteristic timescales: the frequency ν = ω/2π of

radiation; the conductive timescale σ/ε0, and the dissipative timescale 1/τ . The conductive

and dissipative timescales can be combined to provide the plasma frequency ωp, another

characteristic timescale of the material: ω2
p = σ/ε0τ . Above this frequency, the inertia

of the conduction electrons is too great to respond to the radiation, and the conduction

electrons become transparent. For most metals, this occurs in the ultraviolet. The plasma

frequency depends only on the density of conduction electrons, which is similar for most

metals, so ωp is relatively constant across metals.

The resistivity 1/σ is 3.5 × 10−8 Ω·m for aluminum; 2.4 × 10−8 Ω·m for gold; and 7 ×
10−8 Ω·m for nickel.

The conductive timescale σ/ε0 is 3.2× 1018 Hz for aluminum; 4.7× 1018 Hz for gold; and

1.6× 1018 Hz for nickel.

The dissipative timescale 1/τ is 6.2×1013 Hz for aluminum, and ranges from 1014 to 1015

Hz for most metals.

The plasma frequency is approximately constant over most metals at between 1−2×1016

Hz.

The ATMS operates between 50 and 180 GHz, or 5×1010 to 2×1011 Hz. So the radiation

frequency ω ≪ 1/τ ≪ ωp ≪ σ/ε0.

Since ωτ ≪ 1,

n2 = 1− i
σ

ωε0
(1− iωτ) + O(ω2τ 2)
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= 1− i
σ

ωε0
− στ

ǫ0
+ O(ω2τ 2) (7)

≃ −i
σ

ωε0
= e−iπ/2 σ

ωε0

where the last approximation follows because σ/ε0ω is much larger than any other term.

This implies

n = ±e−iπ/4

√

σ

ωε0
≡ e−iπ/4κ(ω) (8)

This expression for the complex index of refraction of a metal is combined with the Fresnel

equations to calculate the emissivity of the metal as a function of polarization.

Since we are considering harmonic solutions to the wave equation for the electric field of

the form

E = E0e
iω(t−nz/c) (9)

where z is a spatial coordinate, where n ≡ ck/ω, and where k is wavenumber, we can

evaluate the skin depth δ for the penetration of radiation from the imaginary part of n:

δ =

√

2ε0c2

σω
(10)

The skin depth at 50 GHz (lowest frequency and greatest skin depth) is 0.43 micron for

aluminum, 0.36 micron for gold, and 0.61 micron for nickel. The ATMS reflector is 0.6

micron of gold on a nickel substrate, over the beryllium reflector. It appears that not much

radiation should penetrate to the nickel substrate.

WARM UP CALCULATION:

IMAGINARY INDEX OF REFRACTION AT NORMAL INCIDENCE

Consider θi = 0, n1 = 1, and n2 = −inI , the case of normal incidence onto a purely

imaginary index of refraction. The polarization states are degenerate. For θi = 0, Snell’s

law (5) implies θt = 0. The Fresnel equations reduce to:

T‖

A‖

=
T⊥

A⊥

=
2n1

n1 + n2

(11)

R‖

A‖

= −R⊥

A⊥

=
n2 − n1

n1 + n2

(12)

These are equations (22) and (23) of B&W section 1.5.
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The total reflected energy is proportional to the square of the reflected electric field:

ER = RR∗A2 =

∣

∣

∣

∣

n2 − n1

n2 + n1

∣

∣

∣

∣

2

A2 (13)

which is (37) in B&W section 1.5. For a purely imaginary index of refraction,

∣

∣

∣

∣

R

A

∣

∣

∣

∣

2

=
(−inI − 1)(+inI − 1)

(−inI + 1)(+inI + 1)
=

1 + n2
I

1 + n2
I

= 1 (14)

This implies a purely imaginary index of refraction characterizes a perfect reflector, which

is somewhat counter-intuitive, since dissipation arises from the imaginary part of the index

of refraction.

WARM-UP CALCULATION:

COMPLEX INDEX OF REFRACTION AT NORMAL INCIDENCE

Consider now θi = 0, n1 = 1, and n2 = e−iπ/4κ(ω). Now we are using the full, complex,

low-frequency index of refraction, and κ is a very large number.

∣

∣

∣

∣

R

A

∣

∣

∣

∣

2

=
(e−iπ/4κ− 1)(e+iπ/4κ− 1)

(e−iπ/4κ+ 1)(e+iπ/4κ+ 1)
=

κ2 + 1− 21/2κ

κ2 + 1 + 21/2κ

=
κ2(1 + 1/κ2 − 21/2/κ)

κ2(1 + 1/κ2 + 21/2/κ)

= (1− 21/2/κ)(1− 21/2/κ) + O(1/κ2)

≃ 1− 23/2

κ
(15)

where we ignore terms of order 1/κ2.

Since the fraction of energy absorbed is one minus the fraction reflected, and since the

principle of detailed balance requires that absorption equal emission, then we can write down

the normal-incidence emissivity:

ǫn =

√

8ω

σ/ε0
(16)

This relation is sometimes called the Hagen-Rubens equation.

Compared with the case of purely imaginary index of refraction, we can see that the real

part of the index of refraction is necessary for dissipation.

The values of ǫn at 180 GHz (the highest frequency and greatest emissivity) are 1.6×10−3

for aluminum; 1.4× 10−3 for gold; and 2.3× 10−3 for nickel.

5



L.L. Williams 2 June 2015

COMPLEX INDEX OF REFRACTION AT 45-DEG INCIDENCE

Consider now θi = π/4, n1 = 1, and n2 = e−iπ/4κ(ω). This case should be representative

of the ATMS reflector. We have only to substitute the values for these parameters into the

Fresnel equations for the reflected electric vector (3), (4), for the components parallel and

perpendicular to the plane of incidence.

First note that cos θi = 2−1/2, and (7) applied to Snell’s law (5) gives

sin2 θt =
sin2 θi
n2
2

=
eiπ/2

2κ2
=

i

2κ2
(17)

so that

cos θt =
√

1− i/2κ2 = 1 + O(1/κ2) ≃ 1 (18)

Substituting now into (3) for the magnitude of the parallel reflectivity, we obtain
∣

∣

∣

∣

R‖

A‖

∣

∣

∣

∣

2

=
R‖

A‖

R‖
∗

A‖

≃ (e−iπ/4κ 2−1/2 − 1)(e+iπ/4κ2−1/2 − 1)

(e−iπ/4κ 2−1/2 + 1)(e+iπ/4κ2−1/2 + 1)

=
κ2/2− κ+ 1

κ2/2 + κ+ 1
=

(κ2/2)(1− 2/κ)

(κ2/2)(1 + 2/κ)
+ O(1/κ2)

= (1− 2/κ)(1− 2/κ) + O(1/κ2) = 1− 4/κ+ O(1/κ2)

≃ 1− 4/κ (19)

This equation gives the fraction of incident parallel energy that is reflected.

Likewise, for the fraction of incident perpendicular energy, substitute into (4) for the

magnitude of the perpendicular reflectivity:
∣

∣

∣

∣

R⊥

A⊥

∣

∣

∣

∣

2

=
R⊥

A⊥

R⊥
∗

A⊥

≃ (2−1/2 − e−iπ/4κ)(2−1/2 − e+iπ/4κ)

(2−1/2 + e−iπ/4κ)(2−1/2 + e+iπ/4κ)

=
κ2 − κ+ 1/2

κ2 + κ+ 1/2
=

κ2(1− 1/κ)

κ2(1 + 1/κ)
+ O(1/κ2)

= (1− 1/κ)(1− 1/κ) + O(1/κ2) = 1− 2/κ+ O(1/κ2)

≃ 1− 2/κ (20)

By the same logic that led to (16) from the normal-incidence reflectivities, we can identify

the parallel and perpendicular polarization emissivities for a 45◦ incidence angle in terms of

the normal-incidence ǫn:

ǫn(0
◦) = 23/2/κ (21)

ǫ‖(45
◦) = 4/κ =

√
2ǫn (22)

ǫ⊥(45
◦) = 2/κ = ǫn/

√
2 (23)
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APPLICATION TO THE ROTATING REFLECTOR

The ATMS distinguishes polarization directions labelled “V” and “H”, nominally for

vertical and horizontal. However, due to the transverse nature of radiation, the entire polar-

ization vector viewed at nadir is “horizontal”, in that it has no component perpendicular to

the earth surface. So the “V” label is somewhat non-physical. But according to the instru-

ment spec, AE-28300, the “V” direction corresponds to the polarization parallel to the plane

of incidence at nadir, and the “H” direction corresponds to the polarization perpendicular

to the plane of incidence at nadir. In the spacecraft frame, the reflector rotation axis is

along the track direction, so the parallel radiation reflected by the reflector at nadir would

be perpendicular to the earth surface: “vertical” in the spacecraft frame.

Let us denote the reflector rotation angle as φ, and set φ = 0 at nadir. As the reflector

rotates, its principle axes (parallel and perpendicular to the plane of incidence) rotate with

it. With this, we can express the “V” and “H” components of the received electric field

vector in terms of the rotating parallel and perpendicular components:

EV = E‖ cosφ− E⊥ sinφ (24)

EH = E‖ sinφ+ E⊥ cosφ (25)

When we decompose the incident radiation vector into A‖ and A⊥, it is important to

note that these components do not capture all radiated power at all scan angles. Again, due

to the transverse nature of the radiation, the emission from the surface has no component

perpendicular to the earth surface. The parallel polarization direction always lies in the

plane of the earth surface at all scan angles. However, the perpendicular component is only

in the surface plane at nadir. At φ 6= 0, the perpendicular component is geometrically

reduced compared to the nadir direction.

So the total polarization of the emissive scene must be resolved into vectors co-planar

with the earth surface. The direction parallel to the plane of incidence at the reflector can

be chosen as one of the scene basis vectors. But the perpendicular component can not be

a basis vector. Let us therefore define source emission polarization bases of parallel (A‖ as

before), and a surface basis vector AS orthogonal to the parallel vector. Then, at non-nadir

scan angles, we can express:

A⊥ = AS cosφ (26)
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The AS basis vector is parallel to the scan direction. As the scan angle increases, then A⊥

begins to pick up increasingly larger components perpendicular to the earth surface. If the

scan could go out to φ = 90◦, then A⊥ would vanish because the source emission can have

no component perpendicular to the earth surface. For unpolarized scenes, A2
‖ = A2

S, and so

the perpendicular component A⊥ is reduced relative to the parallel component A‖ off-nadir.

Now let us express the H and V power received by the instrument, in terms of the reflected

polarization components:

|EV |2 = |R‖|2 cos2 φ+ |R⊥|2 sin2 φ

= A2
‖(1− 4/κ) cos2 φ+ A2

S cos
2 φ(1− 2/κ) sin2 φ (27)

= A2
‖(1− ǫ‖) cos

2 φ+ A2
S cos

2 φ(1− ǫ⊥) sin
2 φ

Likewise,

|EH |2 = |R‖|2 sin2 φ+ |R⊥|2 cos2 φ

= A2
‖(1− 4/κ) sin2 φ+ A2

S cos
2 φ(1− 2/κ) cos2 φ (28)

= A2
‖(1− ǫ‖) sin

2 φ+ A2
S(1− ǫ⊥) cos

4 φ

VIEWING COLD SPACE

As mentioned above, there is no fall-off in scan angle of the perpendicular component

when viewing cold space, as there is when viewing the earth. In this case, |A‖|2 = |A⊥|2 ≡
|Ac|2, where we have defined the cold space temperature A2

c . Let us return, then, to (27)

and (28), for the case of cold space:

|EV |2 = A2
c(1− ǫ‖) cos

2 φ+ A2
c(1− ǫ⊥) sin

2 φ

= A2
c [1− ǫ‖ cos

2 φ− ǫ⊥ sin2 φ] (29)

Likewise,

|EH |2 = A2
c(1− ǫ‖) sin

2 φ+ A2
c(1− ǫ⊥) cos

2 φ

= A2
c [1− ǫ‖ sin

2 φ− ǫ⊥ cos2 φ] (30)
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THERMAL EMISSION FROM THE REFLECTOR

in work...
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