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A method is described for assessing the impact load from an avalanche. Instead of considering the
problem from a force-impulse perspective, the avalanche is treated as a fluid and the impact is ascribed
to hydrodynamic pressure. The calculation will be done in 3 iterations in order to illustrate and isolate the
various factors, with each iteration increasing in complexity.

1. Vertical fall onto horizontal roof

Consider the simple case of snow dropped from a height H. It will accelerate under the influence of
gravity and attain a velocity V at the time it strikes the horizontal roof. The snow has a mass density p.
The acceleration under gravity is g.

Hydrodynamic flows are characterized by a dynamic pressure P, = pV2. Conversely, static fluids of a
depth D provide a static pressure of P,= pgD. This and subsequent calculations will compare the static
load on a roof bearing snow of depth D with the “impact load” imparted by a hydrodynamic flow with
velocity V.

Snow accelerating under gravity from a height H will attain a velocity V = gt, where t is the time to fall
H. The fall distance H = gt*/2. These are standard results for velocity and distance under constant
acceleration. Combining these two we find:

V=(2Hg)"

and the hydrodynamic pressure on the roof is:
Pd = 2pg H.

Interestingly, the dynamic and static pressures both are proportional to pg. Therefore define a critical
depth D, of snow on the roof which is the depth at which the hydrostatic load equals the impact load:

D,=2H.

This means the depth of snow on the roof necessary for a static load to equal the impact load is twice the
height the avalanche falls, testament to the enormity of the dynamic pressure relative to the static
pressure. Even a modest drop of 100 feet would have an equivalent static load corresponding to a depth of
snow on the roof of 200 feet.



2. Fall down a frictionless slope onto a horizontal roof

Now consider the more realistic case of snow falling down a slope making an angle & with the horizontal.
A flat slope corresponds to o =0 and a vertical one to & = 90 degrees. In this case, the snow is
accelerated downhill by the component of g parallel to the slope, gsinQ.

It is assumed here that the slope is frictionless. My intuition tells me that this is a pretty good
approximation for a number of regimes: snow sliding over a hard slab, snow at the slide interface
fluidized by the slide, and snow riding over a layer of air churned into the slide much like the puck sliding
on an air hockey table. In other words, the frictional deceleration should be much less than the
gravitational acceleration. I expect this assumption to break down for long runouts. At the end of a big
slide it will be plowing snow on shallower slopes. This resistive force from stable snow will limit the
velocity achieved by snow in a slide.

Now, V=tg sina and the distance along the slope H = g sina t*/2 so that

V=(2Hgsina)"?
However, the snow is not impacting normally to the roof in this case. No hydrodynamic stress is imparted
to the roof from the component of snow velocity parallel to the roof. The expression pV? can be
understood as a momentum flux density: a momentum density of PV is delivered by the flow at a rate V.
Due to the slope angle, both the momentum density and the flow rate are attenuated by a factor of sina.
This implies that the hydrodynamic pressure delivered normal to the roof is:

P, = 2pgHsin’a

and the critical depth at which hydrostatic pressure equals dynamic pressure is

D,=2Hsin’a.

The slope strongly attenuates the dynamic pressure delivered normal to the roof compared to the case of a
vertical drop. One factor of sin@ results from the reduced gravitational acceleration along the slope, one
factor from the diminished momentum delivered normal to the roof, and one factor from the diminished
rate of delivery of momentum. Some values of this function are tabulated below.

a sin‘a
30 0.13
45 0.35
60 0.65
75 0.90




This means snow falling 100 feet down and along a 30 degree slope would impart a pressure equivalent to
a static snow load on the roof 26 feet deep. If the slope were 45 degrees, the critical hydrostatic depth
would be 70 feet. The impact load is greatly diminished for low grade avalanches but is still high for steep
slope slides.

3. Fall down a frictionless slope onto a pitched roof

Consider now a roof pitched at an angle 8 with the horizontal, so that the roof normal is turned away
from the slide velocity vector to further minimize the hydrodynamic pressure imparted normal to the
roof. We will consider here the case of an A-frame roof with the plane of the “A” shape parallel to the
slope surface. This is the case that minimizes impact load on the roof since turning the roof surface into
the slide velocity vector will increase the impact load normal to the roof. More complex, multi-faceted
roof planes are possible but their effect is captured by this simple case.

The avalanche velocity vector is still as given in section 2 above, V=(2Hgsin@)"*. In order to compute the
dynamic pressure imparted to the sloped roof, find the projection of the slide velocity vector onto the roof
normal vector. In a Cartesian x-y-z coordinate system, the slide velocity vector v can be assumed in the x-
z plane, and written

v=cosQxX-sinQ z

Likewise, the roof normal Ry can be assumed to be in the y-z plane, and written

Ry=sinBy+cosPz
Therefore the projection of these two vectors is simply (-sin@ cosf3). The negative sign is because the two
vectors point in opposite directions. In section 2 above, the momentum delivered to the roof and the rate
at which it was delivered were both attenuated by a factor of sina. Here the slope of the roof modifies the
factor to be sinacos. If the roof plane is vertical (B = 90 deg), then no dynamic load is exerted on the

roof. If the roof plane is horizontal (B = 0 deg), then the result of section 2 is recovered.

The dynamic pressure delivered to an A-frame roof with the plane of the “A” parallel to the slope surface
is then

P, = 2pgHsin’a cos’B

The critical depth at which hydrostatic pressure equals dynamic pressure is

D, = 2Hsin’acos’p .




Obviously, a pitched roof further reduces the dynamic load of a slide. Some values are shown below:

B cos’P
30 0.75
45 0.5
60 0.25
75 0.07

Some values of sin’acos*f for various slope and roof angles are tabulated below

The values quantify how the dynamic load of increasingly steep slopes can be mitigated by increasing
roof pitch. Judicious choices of roof pitch can keep the dynamic load equivalent static depth below 20%
of the slope height (values shown in green), but impractically steep pitches are required to get much
below this. For example, a roof pitched at 75 degrees would require 37 feet of vertical height for every 10
feet of horizontal coverage.

In summary, dynamic loads are enormous compared to static loads and perhaps only strong materials can
withstand impact for long, steep avalanche slope exposure. It is worth noting that this calculation is
independent of the thickness of the avalanche slab.



