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This review considers the hard problem of interstellar travel: overcoming fundamental limits set
by the nature of space and time. The prospects for a solution to this problem are discussed in
terms of the mathematical form of extensions to the classical equations of electrodynamics and
general relativity, extensions which offer some prospect of faster-than-light interstellar travel with
terrestrial engineering. This is tantamount to the electromagnetic control of gravity. Extensions
are considered which preserve invariance under general coordinate transformations, but which relax
Lorentz invariance in the limit of flat spacetimes. Such extensions describe undiscovered couplings
between gravity and electromagnetism and can be understood to unify them at the classical level.
Of course, only extensions consistent with past tests of Lorentz invariance are contemplated.

Among the suite of effects which arises from coupling between gravity and electromagnetism, at
least two are of interest for faster-than-light travel. One is a non-Lorentzian invariant interval with
its prospect of spacelike geodesics and a corresponding relaxation of the limiting speed of light. The
second effect is control of the coupling constant for mass-energy to warp spacetime, which would
seem to be necessary to allow terrestrial engineering of interesting space warps such as wormholes
or Alcubierre warps. Both effects are mediated by as-yet-undiscovered force fields, perhaps just a
single scalar field. New forces in the equations of motion and new sources of stress-energy in the
Einstein equations are auxiliary effects which may be of interest for falsifying such extensions to
general relativity and electrodynamics.

An example theory is presented which exhibits such extensions to the laws of gravity and electro-
magnetism: five-dimensional general relativity, developed between 1920 and 1960. In this theory,
the faster-than-light limiting speed and the control of the coupling constant, as well as the extra
forces in the equations of motion and the extra stress-energy source, all originate from a single scalar
field. There is a particularly alluring identification of electric charge as a sort of momentum in the
fifth dimension.

It can be perilous to speculate about undiscovered physics, but the discoveries contemplated here
will apparently be necessary if our civilization, or any civilization, is to reach the stars and explore
the galaxy.
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SCOPE OF THE REVIEW

This review discusses extensions to the equations of
general relativity and electrodynamics which may be nec-
essary if our civilization is ever to explore the galaxy.
This must essentially be a problem of the electromag-
netic control of spacetime and gravity.

The electromagnetic control of spacetime and gravity
is a topic of general interest in physics, but particularly
so for the application to interstellar travel. This is be-
cause the problem of interstellar travel is a problem of
spacetime. And according to general relativity, gravity
is the manifestation of the structure of spacetime. As
will be made clear below, the theory of relativity places
profound constraints on the practicability of interstellar
travel and galactic exploration.

The interest in electromagnetic control arises because
we are an electromagnetic species: our chemistry, our
metallurgy, our power generation, our communications
are all ultimately electromagnetic in nature. Thus, if we
wish to surmount the limitations of relativity and reach
the stars with any machine we construct, we may expect
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the machine to be ultimately electromagnetic in nature
and its motion determined by its own inertia subject to
electromagnetic, inertial, and gravitational forces.

Taking interstellar travel to be essentially a classical
problem, the scope of this review is bounded to the classi-
cal equations of general relativity and electromagnetism.
There are other approaches to overcoming the impedi-
ments of relativity and there are many reviews, e.g., [11].
Often in such approaches, however, the engineering that
would achieve them is unclear, and may be unlike any
conception of engineering we have today. Here, engineer-
ing feasibility is built in at the outset by considering ex-
plicitly the equations which underpin current terrestrial
engineering technologies – those of classical electrody-
namics and relativistic motion.

The laws of physics fall into two classes. Field equa-
tions describe how the force field behaves in the presence
of material sources, and equations of motion describe how
material bodies are influenced by the force fields. This
review will investigate extensions to both. We start by
reviewing the nature of space and time and the implied
fundamental limit to interstellar travel. We then move on
to considering electromagnetism in flat spacetime. Then
we consider curved spacetime and the coupled equations
of electromagnetism and general relativity. Then we con-
sider the general form of as-yet-undiscovered extensions
to the equations of motion and to the field equations,
focusing on those aspects which offer some prospect for
practical interstellar travel. A particular framework of
extensions is examined, the five-dimensional theory of
general relativity introduced by Kaluza [1] and subse-
quently developed by Jordan and colleagues [2] and in-
dependently by Thiry [3].

This review adopts the standard tensor index notation,
as in, e.g., Jackson [4] or Weinberg [5]. A reader unfamil-
iar with the mathematical formalism used to express the
equations in this review may still follow along the general
points of this article.

I. FLAT SPACETIME

I.1. Motion in Spacetime

In the 20th century, we discovered that space and time
are joined in a specific mathematical way – they are dif-
ferent aspects of spacetime. How you measure time, and
how you describe motion in space, depends on your state
of motion. The times and distances measured between
events have a precise mathematical dependence on the
state of motion. This mathematical dependence is called
the Lorentz transformation. It was implicit in the laws
of electromagnetism synthesized by Maxwell in the 19th
century, but it was only made explicit by Einstein in
1905.

Consider any two events; say, two lightning strikes.

Choose to measure the time between them, and the dis-
tance between them, with any clocks and yardsticks you
please, and from any state of motion. The Lorentz trans-
formation of the space and time intervals between events
has the curious property of preserving the difference
of the time and space intervals. The Lorentz-invariant
spacetime interval is

c2dτ2
≡ c2dt2 − (dx2 + dy2 + dz2) (1)

where t is the time coordinate, x, y, z are the spatial coor-
dinates, and c is the speed of light. The Lorentz-invariant
quantity τ is known as the proper time connecting the
events. The choice of relative sign between the space
and time components in (1) is immaterial, but leads to
differences in sign conventions in equations such as (18).
This choice is based on mathematical convenience; it is
the sign difference that is crucial. Sometimes this feature
is referred to as the hyperbolic nature of spacetime.

We can choose to formulate physical law in terms of
the individual space and time coordinates, even though
they are altered by the Lorentz transformation. Indeed,
that’s how the Lorentz-invariant Maxwell equations were
originally written before Einstein. A more elegant formu-
lation of physical law is found when written in terms of
the proper time and other Lorentz-invariant quantities.

When the spacetime interval (1) is determined from
the trajectory of a particle in motion, the proper time
τ defined in (1), not the coordinate time t, turns out to
be the fundamental parameter for the Lorentz-invariant
characterization of motion. The proper time corresponds
to the time coordinate of a comoving observer who natu-
rally chooses to be at rest in his own coordinate system.
Our space and time coordinates individually do not cap-
ture the essence of phenomena; we must consider the
4-velocity

Uµ
≡

dxµ

dτ
=

dt

dτ

dxµ

dt
≡ γ

dxµ

dt
= γ(c,v) ≡ (U0,U) (2)

where greek indices take on 4 values for each of the space-
time coordinates xµ. This 4-component vector, not the
usual 3-component velocity vector v, is used in a Lorentz-
invariant expression for the equations of motion. The
quantity γ depends on v in a way which can be deduced
from (1).

Because of the mathematical dependence of γ, the time
component of (2) is proportional to the energy E and the
spatial component is proportional to the momentum p.
Then (1) and (2) constrain the spacetime magnitude of
the 4-velocity, and the associated energy and momentum:

c2 = (U0)2 − (U)2 ≡ UµUµ = E2/(mc)2 − p2/m2 (3)

where the last terms are written to explicitly reflect the
energy and momentum for a body of mass m. Equation
(3) is the famous relativistic energy equation for particles,
showing both a kinetic energy and a rest energy.
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Lorentz invariance is an important concept when dis-
cussing physical law and extensions to it because this
invariance constrains the mathematical form of any laws
of physics, known or unknown, operating in the arena
of spacetime. Lorentz invariance means that the form of
the equations remains the same under a Lorentz trans-
formation – the domain of special relativity. In general
relativity, invariance under general coordinate transfor-
mations is considered.

I.2. Fundamental Limit to Practical Interstellar

Travel

We haven’t yet discussed electromagnetism or gravity
but already we are prepared to discuss the fundamental
limit to practical interstellar travel faced by our civiliza-
tion – the hard problem. Let us emphasize that the fun-
damental limit is not a fuel problem; the fuel problem
is the easy problem of interstellar travel. Let’s assume
that Project Icarus is realized, or that we have a tank of
rocket fuel the size of the moon, or that we have any other
unlimited amount of conventional propulsion whose ulti-
mate purpose is to push a space ship through space. The
occupants of the ship will feel the acceleration of the ship
as a force throwing them to one side of the ship. Indeed,
according to the theory of relativity, this acceleration will
be equivalent to gravity for the ship’s crew.

We want to consider the simplest possible mathematics
which still captures the essence of the hard problem. Let
us consider, then, the case of constant acceleration, a,
irrespective of how this acceleration is engineered: chem-
ical rocket, nuclear explosions, anti-matter, lasers, etc.
This simple model is appropriate for interstellar travel
because one approach is to accelerate at a constant rate
for the first half of the trip, and decelerate the second
half.

For acceleration and motion in the x direction, (3) im-
plies

c2 = c2

(
dt

dτ

)2

−

(
dx

dτ

)2

(4)

This provides one equation for t(τ) and x(τ), but a sec-
ond is needed to determine the system. Therefore con-
sider dUµ/dτ .

In the frame of the space ship, v = 0 and γ = 1.
Yet they will still feel the acceleration a. So (2) implies
(dUµ/dτ)ship = (0, a, 0, 0). From this we can calculate
the spacetime length of the acceleration 4-vector in the
space ship frame. Since the quantity is Lorentz-invariant,
it has this same value in any coordinate frame:

dUµ

dτ

dUµ

dτ
= −a2 = c2

(
d2t

dτ2

)2

−

(
d2x

dτ2

)2

(5)

The simple equations (4) and (5) capture the essence
of the hard problem. They have the solutions:

t(τ) =
c

a
sinh

(aτ

c

)
(6)

x(τ) =
c2

a
cosh

(aτ

c

)
(7)

Equations (6) and (7) imply the well-known limiting
speed of light for an object subject to unlimited acceler-
ation:

dx

dt
=

at√
1 + a2t2/c2

≤ c (8)

This limit would preclude practical insterstellar travel for
our civilization because the distances between the stars
are so vast. Our own galaxy is 100,000 light years in
diameter, and the mean distance between stars is about
3 light years. Thus, to cross our galaxy would require
100,000 years on the home planet. The galaxy could not
be explored by any civilization which persists for a time
less than this.

The equations (4) and (5) also imply the well-known
effect of time dilation as expressed in (6). A clock on
board the space ship measuring an interval of proper time
τ would be extremely time-dilated relative to a clock at
rest in the home civilization. During the time a space-
craft accelerated at 1 g for 5 years as measured on board,
74 years would pass on the home planet. Yet in this time
the travelers could scarcely reach the nearest stars.

Under constant acceleration, the spaceship speed
quickly approaches the speed of light. Equation (8) shows
that the spaceship can reach half the speed of light by
holding 1 g of acceleration for half a year. Such rela-
tivistic speeds would dilate the clocks of space travelers
enough for a spaceship to travel an arbitrary distance
during the lifetime of its crew, but the civilization which
sent them can never be informed of their discoveries be-
cause it would evolve out of existence in that time. Trav-
elers moving fast enough to reach the stars become tem-
porally detached from their home civilizations and can
never return to them.

So the hyperbolic nature of spacetime (1) as expressed
in our current understanding of the principles of special
relativity sets two basic limits on practical interstellar
travel. One is the limiting speed of light, combined with
the vast distances to the stars, will prevent a civilization
from exploring any significant fraction of the galaxy be-
fore the civilization evolves out of existence. The second
basic limit is the effect of time dilation, which will tempo-
rally disconnect any astronaut from her civilization even
though the same time dilation effect would allow the as-
tronaut to go an arbitrary distance in her lifetime.

If our civilization is to colonize any part of the galaxy,
it would require some way to break the light barrier
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and accomplish faster-than-light travel. This is a pro-
found dream because (1) also implies that faster-than-
light travel is tantamount to time travel. If faster-than-
light travel is possible, we may expect any machine which
could achieve this would be electromagnetic in nature for
the reasons given in the introduction. Certainly there
are other approaches to investigating departures from
the known laws of physics; here we wish to explore link-
ages between gravity and electromagnetism. Let us turn,
then, to consider extensions to the laws of spacetime and
electromagnetism which may allow us to surmount the
light barrier through the electromagnetic control of grav-
ity and spacetime. We start by considering the known
laws of gravity and electromagnetism.

I.3 Motion in Electromagnetic Fields

The momentum equation for a body of electric charge
q in a combined electric field E and magnetic field B is
given by the Lorentz force law (here in cgs units):

m
dU

dt
= q

(
E +

v

c
× B

)
(9)

The energy equation for such a body is

mc
dU0

dt
= qv · E (10)

Equations (9) and (10) are not separately Lorentz in-
variant but they can be combined using (2) in the single
invariant equation of motion for a charged body in an
electromagnetic field:

m
dUµ

dτ
=

q

c
FµνUν (11)

where Fµν is the electromagnetic field strength tensor. It
has 6 independent components – the vector components
of E and B. For a full development of (11), see, e.g., [4].

I.4. Field Equations of Electromagnetism

The field equations of electromagnetism are the
Maxwell equations. They are commonly written in terms
of the electric and magnetic field vectors (here in cgs
units):

∇ · E = 4πρ , ∇× B =
4π

c
J +

1

c

∂E

∂t
(12)

∇ · B = 0 , ∇× E = −
1

c

∂B

∂t
(13)

where ρ is the electric charge density and J is the electric
current vector. These equations provide a nice example of
coupled field equations: each field can act as a source for

the other. Equation of (12) obviously involves both the
magnetic field and electric field. In the subsequent devel-
opment we will look for analogous couplings expressed in
the equations for the electromagnetic and gravitational
fields.

The classic form (12) and (13) is useful for engineer-
ing purposes but it is not Lorentz invariant. The mag-
netic and electric field vectors do not themselves have
the proper transformation properties, but they do when
considered as the components of the tensor Fµν . This
connection is made in terms of the standard electric and
magnetic potentials:

E = −∇Φ −
1

c

∂A

∂t
, B = ∇× A (14)

Equations (14) satisfy (13) identically. Equations (12)
then follow from:

∂νF νµ =
4π

c
Jµ (15)

where F νµ ≡ ∂νAµ −∂µAν and where coordinate partial
derivatives are abbreviated ∂/∂xν ≡ ∂ν .

The form of (15) manifests the Lorentz invariance of
the Maxwell equations. The electromagnetic current 4-
vector Jµ ≡ (ρc,J) comprises the 3 spatial components
of electric current, and the one temporal component of
electric charge density. The electromagnetic potential 4-
vector Aµ ≡ (Φ,A) comprises the electric potential and
the magnetic vector potential.

At first glance, (15) would appear to be 4 equations in
the 4 unknowns Aµ. However, conservation of charge re-
quires that ∂µJµ = 0, which constrains the 4 equations.
This constraint reduces the number of independent equa-
tions to 3. The extra degree of freedom is fixed by the
choice of a gauge – this is the famous gauge invariance of
electromagnetism.

For a full development of (15) and discussion of its
Lorentz invariance and gauge invariance, see, e.g., [4].

I.5. The Prospects of Electromagnetic Forces in Flat

Spacetime

The Lorentz force law (11) does not offer any prospect
for overcoming the limits to interstellar travel described
in (I.2). An arbitrarily large electric field can be imag-
ined in the momentum equation (9) but it will not change
the basic nature of the solution described in (8) and (6).
The magnetic field offers no prospect either because it
will act only to deflect motion of a body without chang-
ing its energy. The Maxwell equations (15) provide no
prospect because any electric or magnetic fields we may
generate in accordance with them will still be limited in
their effects on the motion of material bodies as just de-
scribed. We can generate arbitrarily large and complex
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electromagnetic fields, but those fields cannot be used
to overcome the limits on interstellar travel set by the
nature of spacetime.

So any machine we may build based on electromagnetic
forces acting in flat spacetime described by (1) could not
overcome the fundamental limits to interstellar travel.
Let us turn to consider physics in curved spacetime.

II. CURVED SPACETIME

Consider now the properties of spacetime described in
Einstein’s theory of general relativity. General relativ-
ity extends the principle of Lorentz invariance, observed
to hold in the flat spacetime of special relativity, to the
principle of general covariance: the equations of general
relativity are required to preserve their form under an
arbitrary coordinate transformation. We use the term
“Lorentz invariant” to refer to equations which are in-
variant under Lorentz transformations, and “covariant”
to refer to equations which are invariant under arbitrary
coordinate transformations. The equations of general rel-
ativity are expressed in terms of scalars, vectors, and ten-
sors which have well-defined coordinate transformation
properties.

II.1. Motion in Gravitational Fields

To treat motion in gravitational fields requires a gen-
eralization of (1):

c2dτ2
≡ gµνdxµdxν (16)

where gµν is identified with the metric describing the
covariant interval between spacetime events. It is clear
from the commutativity of the coordinate length ele-
ments in (16) that gµν must be symmetric in µ and ν.
For the 4 dimensions of spacetime, this implies gµν has 10
components. Equation (3) still holds in that UµUµ = c2.

In the absence of gravitational fields, gµν is diagonal
and constant, and (16) reduces to (1). This is the basic
distinction between special relativity and general relativ-
ity, and is also the distinction between flat spacetime and
curved spacetime. Furthermore, it is an axiom of general
relativity that coordinates can always be chosen locally
so that (1) holds.

The equation of motion for any particle (even a mass-
less one) in a gravitational field is given by the geodesic

equation, the relativistic generalization of Newton’s law
of motion in a gravitational field:

Uα
∇αUµ

≡ Uα(∂αUµ +Γµ
αβUβ) =

dUµ

dτ
+Γµ

αβUαUβ = 0

(17)
Γµ

αβ is the affine connection, a quantity which is formed
from derivatives of the metric tensor gµν . ∇α is the co-

variant derivative. For a full development of (17), see,
e.g., [5].

The effects of gravity are built into the covariant
derivative because Γµ

αβ is effectively the gravitational
field and gµν is the gravitational potential. Because gµν

has this dual identity as the gravitational potential (17)
and the spacetime metric (16), gravity is identified with
the curvature of spacetime. We use the terms spacetime
and gravity interchangeably in this review.

II.2. Field Equations of Gravity

The field equations for gµν are called the Einstein equa-
tions, and are always written in a manifestly covariant
tensor formulation,

Rµν −
1

2
gµνR =

8πG

c4
Tµν + Λgµν (18)

where Rµν and R are rather complicated functions of the
metric tensor, gµν . The stress-energy tensor is Tµν , which
constitutes a source term to the field equations similar to
the source Jµ in (15). The Newtonian gravitational con-
stant is G. The constant multiplying the stress-energy
tensor is very small, which expresses the relative weak-
ness of the gravitational force. It’s why a planet-sized
amount of matter is necessary to get significant gravity.
The term in Λ is the cosmological constant, and corre-
sponds to energy in the vacuum. For a full discussion
and development of (18), see, e.g., [5].

Unlike the Maxwell equations (12) and (13), which
were synthesized from centuries of observations of electric
and magnetic effects, the Einstein equations (18) were
obtained purely theoretically from considerations of gen-
eral covariance and matching Newton’s law of gravity in
an appropriate limit. While the predictions of (18) are
confirmed many times over, its construction retains an
element of artistry. The LHS of (18) has a clear, turn-
the-crank prescription in terms of the metric tensor, but
the RHS is ad hoc. Einstein himself called this distinc-
tion between the two sides of (18) “marble” and “wood”.

A suitable stress-energy tensor can be constructed for
any source, e.g., massive particles, fluids, or pure radia-
tion. The stress-energy tensor is always constructed so
that its covariant divergence vanishes, ∇µTµν = 0, and
this vanishing divergence represents energy and momen-
tum conservation. This conservation property used in
construction of the stress-energy tensor is mirrored by
the vanishing of the covariant divergence of the “mar-
ble” side: ∇µ(Rµν −Rgµν/2) = 0. These 4 equations are
called the Bianchi identities and are satisfied identically
for any gµν . Naively one may expect that (18) are 10
independent equations in the 10 unknowns gµν . But the
4 Bianchi identities reduce this number to 6 independent
equations. The other 4 equations necessary to specify
gµν come from the choice of spacetime coordinates. This
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coordinate invariance is the analog of gauge invariance
for (15).

While the Maxwell equations (15) are linear in the
fields, the Einstein equations (18) are not. This means
the Einstein equations do not allow any analytic prescrip-
tions for calculating general solutions. However, many
exact solutions to the Einstein equations have been dis-
covered, such as the Schwarzschild solution, the relativis-
tic generalization of Newton’s law of gravity that de-
scribes black holes.

II.3. Coupling between Gravity and

Electromagnetism

Before we move to consider couplings yet undiscovered,
let us consider first the known coupling between electro-
magnetism and gravity. The Einstein equations (18) can
be solved under conditions of an electromagnetic stress-
energy tensor. Electromagnetic energy can be a source
of spacetime curvature just as mass can:

Rµν −
1

2
gµνR =

8πG

c4
TEM

µν (19)

where the electromagnetic stress-energy tensor is

Tαβ
EM =

1

4π

(
gαµFµλFλβ +

1

4
gαβFµλFµλ

)
(20)

Because the gravitational potential gµν is so intimately
tied to the properties of spacetime, the Principle of Gen-

eral Covariance which underpins general relativity pro-
vides a simple prescription for writing the field equations
of electromagnetism in gravitational fields. They are ob-
tained from the flat-spacetime Maxwell equations (15)
by replacing the partial derivative ∂µ with a covariant
derivative ∇µ:

∇νF νµ
≡ ∂νF νµ + Γν

ναFαµ + Γµ
ναF να =

4π

c
Jµ (21)

The terms multiplying Γν
αβ and Fαβ represent the effects

of gravity on electromagnetic fields.
Likewise, a gravitational field can deflect electromag-

netic radiation, as in the classic test of the bending of
starlight by the sun. The full equations of motion in
combined electromagnetic and gravitational fields is ob-
tained from (11) and (17)

dUµ

dτ
+ Γµ

αβUαUβ =
q

mc
FµνUν (22)

where the electromagnetically-induced gravitational
force Γµ

αβ is obtained from (19).
Equation (21) is an example of the modification of an

equation discovered earlier, (15), with terms whose ef-
fects were negligible when (15) was first discovered. We
now understand (15) as the limiting case of (21). We will
consider additional extensions in our later development.

II.4 The prospects of electromagnetic forces in

curved spacetime

Some solutions of the Einstein equations which have
implications for interstellar travel have been found, so-
lutions which offer the promise of surmounting the light
barrier. The Einstein equations (18) or (19) allow for
distortions in spacetime, wormholes, which can connect
spatially disparate parts of the galaxy and which there-
fore could in principle be traversed in arbitrarily short
times [6]. (Such wormholes need not be generated elec-
tromagnetically). Wormholes are extreme deformations
of spacetime, similar in some ways to black holes, at dif-
ferent locations in the galaxy. They could feasibly be
“connected” to each other. A traveler would descend into
one wormhole and pop out in the other a short time later
but very far away. So the discovery of curved spacetime
offers a way to accomplish faster-than-light travel in prin-
ciple. Such superluminal travel is still prohibited locally,
but spacetime itself can be curved to connect different
points in space.

We already have an engineering problem because even
if a civilization had the wherewithal to engineer such
structures, the civilization would presumably still have
to travel sub-luminally across the galaxy to the “exit”
point and build it. It is sort of like the pioneers hoping
to take trains or airplanes across North America; they
would still have to travel by covered wagon to the desti-
nation and build the airport or the subway exit.

There is another approach to interstellar travel which
leverages curved spacetime. Alcubierre [7] discovered a
“warp drive” solution to the Einstein equations in which
a specially engineered spacetime bubble can transport
its occupants superluminally across the galaxy. Like the
wormhole solutions, spacetime only allows locally sub-
luminal travel, but in this case general relativity allows
a bubble of flat space to move superluminally. This at
least is better than the wormhole approach because one
need not cross the galaxy first sub-luminally to build the
transport system.

Unfortunately, both the wormhole and the Alcubierre
solutions would require the engineering of astronomical
amounts of mass-energy, and even exotic negative en-

ergy, to warp spacetime into the desired configurations
of 100-meter size wormhole throats or warp bubbles [8].
The root of this impractibility is the very small num-
ber G/c4 which provides the coupling between energy
and spacetime curvature in (18) and (19). So while fea-
sible within the context of our understanding of physi-
cal law, wormholes and Alcubierre drives are impractical
for the solar-mass or Jupiter-mass engineering and ex-
otic energies which would be required to realize them.
These solutions to the Einstein equations give us hope
that faster-than-light travel is not impossible in principle,
but they have no practical realization yet for terrestrial
engineering. While there is some intriguing work being
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done on bringing wormholes or Alcubierre warps down
to terrestrial scale, so far we have no way to achieve it
through terrestrial engineering. In order to make inter-
stellar travel feasible for a civilization existing for a lim-
ited time around some star, qualitatively new extensions
to the known laws of physics will be required.

If our civilization is to advance to the stars in any ma-
chine we may build with our current electromagnetically-
based technologies, we must discover some additional
coupling between spacetime and electromagnetism which
could allow us to overcome the light barrier with
terrestrial-scale engineering. We expect it to ultimately
be in terms of some extension to special relativity and
our current understanding of the nature of spacetime.

III. BEYOND SPACETIME

III.1. Covariant Extensions of Physical Law

In our search for possible new couplings between space-
time and electromagnetism, we are guided by the princi-
ple of general covariance: that any equation of physical
law must preserve its form under a general coordinate
transformation. An expression of the fundamental na-
ture of spacetime, irrespective of the forces and fields,
this principle has been applied with great success across
all fields of physical law since its introduction by Einstein
over a century ago. While there is no “relativity force”
per se, as there is an electric force, for example, the appli-
cation of the principle of general covariance has yielded
our understanding of gravity as a coordinate-dependent
phenomenon. We therefore continue to enforce general
covariance as a discriminator for any new theory.

Yet, as described above, it is considerations of spe-
cial relativity and Lorentz invariance (1) which set the
limits on practical interstellar travel that we wish to sur-
mount. We require a sophisticated extension of physical
law which is informed by our understanding of Lorentz
invariance, but gets around our current understanding of
the limitations described in section I.2. So we allow some
relaxation of the Lorentz coordinate transformation per
se, but still demand that the laws of physics retain their
mathematical form under the more general coordinate
transformation we wish to contemplate.

As we consider these extensions to physical law, we
keep in mind that we are not overthrowing the Maxwell
or Einstein equations, but instead we are seeking a new
regime of operation which has not been experimentally
accessed before. For example, the original equations syn-
thesized by Maxwell (15) are now understood to include
extra general-relativistic effects described in (21). These
effects were not seen by Maxwell because they are negli-
gible on earth’s surface where Maxwell’s equations were
first discovered; (15) is understood to be the limiting case
of (21).

So in this spirit we contemplate a relaxation of invari-
ance under the Lorentz transformation, and with it the
limiting speed of light. We saw how the fundamental
limit to interstellar travel arises from (1). To surmount
the light barrier would presumably require an extension
to (1) and its generalization (16):

gµνdxµdxν = c2dτ2
± dΩ2 (23)

where Ω is some yet-to-be-discovered function of the co-
ordinates xµ. We choose to write this function sugges-
tively as a differential to accord with the general form of
(16). We dispense with any multiplicative correction to
(16) because the terms in dxµdxν would be indistinguish-
able from an arbitrary metric. We therefore suppose the
extension (23) to (16) must be additive.

The implications of (23) are profound. At first it may
appear that (23) is mathematically equivalent to (16).
The important distinction is that Ω does not vanish when
gµν reduces to the flat spacetime metric and (16) reduces
to (1). Consider the variation in (4) implied by (23):

c2
±

(
dΩ

dτ

)2

= c2

(
dt

dτ

)2

−

(
dx

dτ

)2

(24)

We have not specified the functional form of Ω, nor
ruled in or out any particular behaviors. But compar-
ison with (4) makes it clear the equations now support
the necessary degrees of freedom to contemplate spacelike
geodesics and faster-than-ligth travel, and dramatically
alter the limit described in section I.2.

Of course, the search for Lorentz violations has been
under way for a century through a variety of different
experiments. No violation has been seen yet and there
is no evidence for Lorentz violations in the environments
tested by the various experiments. So if they exist at all,
Lorentz violations must be in a test regime that so far
has not been explored – perhaps a precisely engineered
variation of known or unknown force fields, but a vari-
ation that does not occur under natural conditions. An
example of emergent forces of this type is the vacuum
fluctuation forces of the Casimir effect; they are not felt
by natural macroscopic systems unless a machine is built
to express them.

We also want to consider the electromagnetic control
of gravity, extensions to (18) which would obviate the
need for astronomical amounts of mass or energy to warp
spacetime into wormholes or Alcubierre drives. Let us
therefore consider some new control of the coupling con-
stant G/c4 multiplying the stress-energy tensor:

Rµν −
1

2
gµνR =

8πG

c4
ΨTµν + Θµν (25)

where Ψ is a function of the coordinates xµ. The func-
tion Θµν constitutes some yet-to-be-discovered source of
spacetime curvature. The cosmological constant term is
dropped from (18) but it could be considered implicit in
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Θµν . Two new fields, Ψ and Θµν , are introduced to the
Einstein equations; they are jointly constrained by the
Bianchi identities.

For extensions to the Maxwell equations, there is no
need to contemplate adjustments to the coupling con-
stant on the RHS of (21) as we did with Ψ in (25) – the
electromagnetic forces are already quite strong and easy
to generate through terrestrial engineering. But we do
allow another source of electromagnetic fields Υµ:

∇νF νµ =
4π

c
Jµ + Υµ (26)

Finally, additional forces Ξµ are contemplated in the
equations of motion (22):

dUµ

dτ
+ Γµ

αβUαUβ =
q

mc
FµνUν + Ξµ (27)

Although they have been introduced separately, the
quantities Ω, Ψ, Θµν , Υµ, and Ξµ, are expected to be
related by new, invariant field equations, as well as by
the constraints of charge conservation and the Bianchi
identities. So the number of degrees of freedom are go-
ing to be smaller than one might naively expect from
independently adding new terms to the field equations
and equations of motion. Indeed, as we will see when
we consider a specific theory in the next section, a single
yet-to-be-discovered scalar field is sufficient to account
for all these effects.

Of the generalized extensions (23), (25), (26), (27),
perhaps (25) has been the most studied. The classic

Brans-Dicke extensions of general relativity as described
by [5] are of the form (25). Brans-Dicke theory posits
a scalar field Ψ in addition to the standard metric gµν ,
and the Brans-Dicke scalar field equation has matter as
its source. The stress tensor Θµν is a function of Ψ, but
Brans-Dicke theory assumes the scalar field does not en-
ter the equations of motion: Ξµ = 0.

More recent considerations of (25) stem from late-20th-
century discoveries in cosmology. Specifically, the accel-
eration of the Hubble expansion is modeled mathemati-
cally as a cosmological constant in (18) [12]. Considera-
tions of quantum theory suggest that there is a vacuum
energy which would also manifest as a cosmological con-
stant. And the standard model of cosmology has an early
era of rapid inflation which is modeled mathematically
with a scalar field that manifests in (25) as Θαβ [12].

Although a new scalar field Ψ would not be unheard of,
any discovery of a new force Ξµ in the equations of motion
or a new source of electromagnetic fields Υµ would be
truly revolutionary. Let us now consider a specific theory
which illustrates the sort of extensions considered above.

III.2. The Kaluza Unification of Gravity and

Electromagnetism

Soon after Einstein’s completion of general relativity,
Kaluza [1] introduced a theory which unified general rel-
ativity and classical electromagnetism. This was done by
writing the Einstein equations and the geodesic equation
in 5 dimensions using the five-dimensional (5D) metric
g̃ab where:

g̃µν = gµν − k2φ2AµAν , g̃5ν = −kφ2Aν , g̃55 = −φ2 , k2 = 16πG/c4 (28)

Here greek indices are continued to be used to span
the 4 dimensions of spacetime, the index 5 signifies the
fifth dimension, and roman indices span all 5 dimensions.
A tilde is used to denote 5D quantities. Thus, seen as a
matrix, the 5D metric g̃ab consists of the 4D metric gµν

“framed” by the electromagnetic potential Aµ and a new
scalar field φ at the 5th diagonal.

This theory has a 5D invariant length element ds2 ≡

g̃abdxadxb. From (28) one immediately obtains the ex-
tension similar to (23):

ds2 = gµνdxµdxν
− φ2(kAνdxν + dx5)2 (29)

Note that comparison of (28) or (29) with (1) shows
that the 5th dimension has a spacelike signature. To re-
produce standard 4D physics requires the 5th dimension
have the same sign in the metric as the space coordinates.

A key assumption of the Kaluza theory is the cylinder

condition, which is that none of the fields depend on the
5th coordinate: ∂5g̃ab = 0. The cylinder condition is

partially out of convenience: it enormously simplifies the
theory, yet still provides some non-trivial predictions not
found in 4D physics. Furthermore, the 5th dimension
is mysterious and the meaning of variation in the 5th
dimension is difficult to fathom. Still, the ad hoc nature
of the cylinder condition is perhaps the main weakness
of the theory.

The Kaluza field equations for gµν , Aµ, and φ are then
obtained from the 5D vacuum Einstein equations

R̃ab −
1

2
g̃abR̃ = 0 (30)

applied to (28) under the constraint of the cylinder con-
dition, resulting in a set of extensions to physical law
similar to (25) and (26):

Rµν −
1

2
gµνR =

8πG

c4
φ2TEM

µν + Tφ
µν (31)
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∇
µFµν = −3Fµν∂µ lnφ (32)

∇α∇
αφ =

4πG

c4
φ3FαβFαβ (33)

Tφ
µν is a stress-energy tensor for the scalar field whose

precise functional dependence on φ will not concern us
here. Thus the vacuum 5D theory provides the Einstein
equations for gαβ , the Maxwell equations for Aα, and a
field equation for φ – an elegant unification.

Kaluza originally assumed φ was constant. In this
limit, (31) reduces to (19) and (32) reduces to (21). How-
ever, this assumption restricts the electromagnetic field
through (33). Only much later did Jordan [2] and Thiry

[3] independently obtain the full set of self-consistent field
equations (31), (32), and (33).

If the cylinder condition is relaxed, an enormous num-
ber of degrees of freedom are made available, and it’s
not at all clear how to interpret the additional terms
comprising Θµν in (25). Overduin & Wesson [9] suggest
an interpretation of the x5 derivatives in terms of ma-
terial sources such as Tµν and Jµ. In this way, matter
and forces are both obtained purely from geometry; only
marble, no wood.

The 4D equations of motion in this theory are obtained
from a 5D geodesic equation:

Ũ b
∇̃bŨ

µ =
dŨµ

ds
+ Γ̃µ

abŨ
aŨ b = 0 =⇒

dUµ

dτ
+ Γ̃µ

αβUαUβ + 2Γ̃µ
5αUαU5 + Γ̃µ

55
(U5)2 + Uµ d

dτ
ln

(
cdτ

ds

)
= 0 (34)

where Ũa ≡ dxa/ds and Ua ≡ dxa/dτ .

To make contact with the standard equations of motion
(22) requires the identification

kU5
≡ k

dx5

dτ
=

q

mc
(35)

In other words, electric charge arises from “motion” in
the 5th dimension. With this identification and (34) we
can write the extensions Ξµ to the equations of motion
introduced in (27)

Ξµ
Kaluza

= −
q

mc
UαAα ∂µφ2

−
(q/m)2

32πG
∂µφ2 + Uµ d

dτ
ln

(
cdτ

ds

)
+ O(k2A2) (36)

This equation is correct to first order in the small di-
mensionless quantity kA << 1. Because k as given by
(28) is so small, even an astronomical electromagnetic
field such as the 1012 Gauss magnetic field of a neutron
star would still have kA ∼ 10−6. When the scalar field
is constant, (36) reduces to only the second-order terms.

Note from (35) and (28) that the gravitational con-
stant sets a universal charge-to-mass ratio: it has units
of q2/m2. Sub-atomic particles such as electrons and pro-
tons have large charge-to-mass ratios when expressed in
units of G1/2. For such particles, the second term on the
RHS of (36) could be quite large; the manifestation of
these forces is controlled by the variation of the scalar
field. Furthermore, such large charge-to-mass ratios im-
ply spacelike 5D intervals in (29).

III.3 Feasibility Discussion

Let us now summarize the general picture of electro-
magnetic control of gravity developed in the last 2 sec-
tions. We began with the observation that our current
understanding of physical law limits the ability of our civ-
ilization to explore the galaxy. With a desire to search
for new effects which could allow interstellar exploration
with terrestrial engineering, extensions to the laws of gen-
eral relativity and electrodynamics are considered. Such
extensions are tantamount to the electromagnetic control
of gravity.

As an example of a theory of the electromagnetic con-
trol of gravity, the classical, 5D Kaluza theory under
the cylinder condition provides for new electromagnetic
forces (36) from an as-yet-undiscovered scalar force field
φ. The new force is electromagnetic in that it couples
to electric charge; note how the first two terms in (36)
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multiply the electric charge. The scalar field is in turn
coupled to the electromagnetic field Fαβ through (32)
and (33); each is a source in the field equation of the
other. The scalar field acts to modulate the coupling of
mass-energy to spacetime curvature through (31). Fi-
nally, these scalar-electromagnetic effects can modify the
invariant interval through (29).

The latter two qualities are of interest for interstellar
travel. A modulation of the gravitational constant con-
trolling the amount of energy required to warp spacetime
(31) would be the sort of discovery necessary to make
wormholes or Alcubierre warps feasible with terrestrial
engineering. And a non-Lorentzian adjustment to the
invariant length element (29) could portend a change in
the hyperbolic structure discussed in section I.2. The
new forces in (36) may not have implications for faster-
than-light travel, but they would be perhaps measurable
and diagnostic of the general structure of the theory.

Perhaps the most fascinating aspect of the Kaluza the-
ory is the intepretation of electric charge as motion in
the fifth dimension. Electric charge is the fifth compo-
nent of an energy-momentum-charge 5-vector [10]. This
means electric charge is not a Lorentz scalar in this the-
ory. But the cylinder condition requires it behave like a
Lorentz scalar. Since the 5D metric does not depend
on the fifth coordinate, there is a conserved quantity
g̃5aŨa ∝ (q + 16πGmAνUν/c3)φ2. In the absence of
electromagnetic fields and with constant φ, the charge q
is invariant. With electromagnetic fields, however, there
can be minute variations in charge but it is probably un-
observable [10]. Thus the cylinder condition accounts for
why charge behaves as a scalar.

The Kaluza theory provides a particularly simple il-
lustrative example of extended physics because all the
effects and couplings are achieved with a single new,
as-yet-undiscovered scalar field. One could build more-
complicated expressions for Ω, Ψ, Θµν , Υµ, and Ξµ from
more-elaborate tensor fields, but it’s useful to consider
first the simplest extensions to physical law. The scalar-
only theory could also be treated as a parameterization
of other theories.

We may ask what the prospects are for the universe
harboring a scalar field which has gone undiscovered so
far. The answer is: quite good. There are unsolved prob-
lems in cosmology which could feasibly be addressed by
a scalar field and associated scalar force. The era of in-
flation in the standard big bang model is expressed in
terms of a scalar field. There is also a search under-
way for a quantum scalar field – but this is not cur-
rently expected to have long-range force effects. None
of these motivations for a scalar field were known during
the 1920s when the Kaluza theory was originally con-
sidered and discarded. There is some similarity between
the Kaluza scalar field and the Brans-Dicke scalar field,
in that they both modify the Einstein equations in the
same way (31). But the Brans-Dicke scalar field has no

coupling to charge or electromagnetic fields, and does not
appear in the equations of motion.

To consider the quantitative feasibility of this particu-
lar theory, let us return to (36) to ask what sort of gra-
dients in the scalar field are needed to get an observable
effect in (27). The field equation (33) provides a length-
scale for the variation of φ. For a neutron star magnetic
field of 1012 Gauss, the lengthscale is of order one as-
tronomical unit [10]. Of course, the variation induced in
φ from terrestrially-engineered electromagnetic fields will
be negligible – the scale of variation would be the size of
the universe. Just as the small coupling constant G/c4

in (19) requires astronomical amounts of mass-energy to
curve spacetime, the same small coupling constant in (33)
requires astronomical amounts of electromagnetic energy
to “put a dent” in the scalar field. This may be troubling
for our hope to use electromagnetic means to engineer the
scalar field.

In this theory, however, the gradient of the scalar field,
which is small, is multiplying a term which could be quite
large: the second term on the RHS of (36). For a pro-
ton, the quantity q/kmc ∼ 1021c [10]. Although this is
quite large, it is modulated by very small gradients in the
scalar field which serve to keep small the modification to
the equations of motion. Further investigation of (36) is
needed.

CONCLUSION

The Kaluza theory may not be the correct theory to
extend the laws of gravity and electromagnetism in a way
that could make interstellar exploration feasible for our
civilization. But it does show us the sorts of behavior we
may expect from such a theory if it exists: new couplings
between gravity and electromagnetism would manifest
as a correction to the invariant interval of general rel-
ativity, and manifest as new forces in the equations of
motion. The coupling constant for mass-energy to warp
spacetime is controlled through a scalar field. We have
not provided solutions here which unequivocally prove
that such effects are possible, but only that the theory
has the mathematical degrees of freedom to accommo-
date such effects. In any correct theory, the new forces
must be small or otherwise operative in a regime that
has so far not been tested experimentally – otherwise we
would have discovered them already. Thus, the sort of
extensions to physical law hypothesized here will likely
be falsifiable, which is desirable in any such theory. In-
deed, the 5D theory continues to attract the attention of
researchers around the world. As we interpret such ex-
periments we must keep in mind that just a single scalar
field added to the existing known fields of gravity and
electromagnetism could account for all these effects; more
complicated tensor fields are not mathematically neces-
sary. With discoveries in cosmology indicating a new
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scalar field, discovery of electromagnetic control of grav-
ity remains a possibility.

GLOSSARY OF SYMBOLS

Aµ is the electromagnetic potential (4 numbers)
c is the speed of light
∇α is the covariant derivative
Fµν is the electromagnetic force field (6 numbers)
gµν is the gravitational potential and the spacetime met-
ric (10 numbers)
Γµ

αβ is the gravitational force field (40 numbers); affine
connection; Christoffel symbol
G is the gravitational constant
Jµ is the electric charge and electric current (4 numbers)
Λ is the cosmological constant
m is the mass of a material object
∂α is the partial derivative
q is the charge of a material object
Rµν is a complicated set of derivatives of gµν (10 num-
bers); the curvature of spacetime
R ≡ Rµνgµν

Uµ is the 4-velocity of an object moving in spacetime (4
numbers)
s is the 5D invariant interval
τ is the 4D invariant interval; proper time
Tµν is the energy and momentum fluxes of matter and/or
radiation (10 numbers)
xµ is the spacetime coordinate (4 numbers)

Ω is a hypothetical extension of the spacetime interval
Ψ is a hypothetical field which controls the coupling of
mass-energy to gravity
Θµν is a hypothetical new source of spacetime curvature
(10 numbers)

Υµ is a hypothetical new source of electromagnetic fields
(4 numbers)
Ξµ is a hypothetical new force field (4 numbers)
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